A Secret Weapon For المعين
A Secret Weapon For المعين
Blog Article
تمت الكتابة بواسطة: دينا الرقطي آخر تحديث: ١٢:٢٥ ، ٥ سبتمبر ٢٠٢١ ذات صلة قانون حساب مساحة المعين
يعدّ رباعياً مماسياً بمعنى أنّ كل ضلع من أضلاعه هو مماس لدائرة واحدة.
المعين عبارة عن مثلثين وكل مثلث متساوي الساقين، يشتركان في القاعدة.
ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي :
المعين: أضلاع المعين ليست متعامدة مع بعضها البعض، وفقط الأضلاع المتقابلة متساوية.[١]
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
وعلى الرغم من الخصائص المختلفة بين كل من المعين والمربع إلّا أن هناك خصائص متشابهة بينهما، وهي كالآتي:
المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في مجال الرياضيات وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.
المؤسسة الاردنية الاقتصادية والاجتماعية للمتقاعدين العسكريين والمحاربين القدماء
المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.
لحساب مساحة المعين ، ما عليك سوى استخدام الصيغة التالية.
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. فضلًا شارك في تحريرها.
متساوي الأقطار · متعامد الأقطار [الإنجليزية] · دائري (ثنائي المركز) · مماسي (مماسي خارجي) · لامبرت · ساتشري
القُطران متعامدان وينصّفان زواياه وهما محوَرَي التماثل للمعين، كما أنّ كل read more قطرٍ من أقطاره يقسم المعين إلى مثلثَين متطابقَين.
يمكن رؤية شكل المعين في مجموعةٍ متنوعةٍ من الأشياء في عالمنا المحيط، مثل الطائرة الورقية، ونوافذ السيارة، إشارات المرور، بعض المجوهرات تكون على شكل معينٍ، أيضًا هيكل المباني، المرايا... .
Report this page